24 research outputs found

    Vibrotactile Stimulus Frequency Optimization for the Haptic BCI Prototype

    Full text link
    The paper presents results from a psychophysical study conducted to optimize vibrotactile stimuli delivered to subject finger tips in order to evoke the somatosensory responses to be utilized next in a haptic brain computer interface (hBCI) paradigm. We also present the preliminary EEG evoked responses for the chosen stimulating frequency. The obtained results confirm our hypothesis that the hBCI paradigm concept is valid and it will allow for rapid stimuli presentation in order to improve information-transfer-rate (ITR) of the BCI.Comment: The 6th International Conference on Soft Computing and Intelligent Systems and The 13th International Symposium on Advanced Intelligent Systems, 201

    A text segmentation approach for automated annotation of online customer reviews, based on topic modeling

    Full text link
    Online customer review classification and analysis have been recognized as an important problem in many domains, such as business intelligence, marketing, and e-governance. To solve this problem, a variety of machine learning methods was developed in the past decade. Existing methods, however, either rely on human labeling or have high computing cost, or both. This makes them a poor fit to deal with dynamic and ever-growing collections of short but semantically noisy texts of customer reviews. In the present study, the problem of multi-topic online review clustering is addressed by generating high quality bronze-standard labeled sets for training efficient classifier models. A novel unsupervised algorithm is developed to break reviews into sequential semantically homogeneous segments. Segment data is then used to fine-tune a Latent Dirichlet Allocation (LDA) model obtained for the reviews, and to classify them along categories detected through topic modeling. After testing the segmentation algorithm on a benchmark text collection, it was successfully applied in a case study of tourism review classification. In all experiments conducted, the proposed approach produced results similar to or better than baseline methods. The paper critically discusses the main findings and paves ways for future work

    Virtual, Distributed Courses to Teach Global Software Engineering

    Get PDF
    In addition to knowledge of distributed project management techniques, software engineering courses need to teach students the intercultural communication skills necessary to cooperate effectively with team members from different cultural backgrounds. Because many students do not have the time or financial resources to spend a semester in a foreign country, participation in virtual, distributed courses at their home universities can provide opportunities to gain international experiences for a larger group of students. Experiences, results and lessons learned from several iterations of distributed, virtual courses conducted between universities in Mongolia, Mexico, Japan and Germany are presented. Instead of classic, instructor-based lectures, a project-based learning approach was implemented to simulate a real-world, global software engineering project

    Multi-command Tactile Brain Computer Interface: A Feasibility Study

    Full text link
    The study presented explores the extent to which tactile stimuli delivered to the ten digits of a BCI-naive subject can serve as a platform for a brain computer interface (BCI) that could be used in an interactive application such as robotic vehicle operation. The ten fingertips are used to evoke somatosensory brain responses, thus defining a tactile brain computer interface (tBCI). Experimental results on subjects performing online (real-time) tBCI, using stimuli with a moderately fast inter-stimulus-interval (ISI), provide a validation of the tBCI prototype, while the feasibility of the concept is illuminated through information-transfer rates obtained through the case study.Comment: Haptic and Audio Interaction Design 2013, Daejeon, Korea, April 18-19, 2013, 15 pages, 4 figures, The final publication will be available at link.springer.co

    A Machine Learning Framework for Balancing Training Sets of Sensor Sequential Data Streams

    Get PDF
    The recent explosive growth in the number of smart technologies relying on data collected from sensors and processed with machine learning classifiers made the training data imbalance problem more visible than ever before. Class-imbalanced sets used to train models of various events of interest are among the main reasons for a smart technology to work incorrectly or even to completely fail. This paper presents an attempt to resolve the imbalance problem in sensor sequential (time-series) data through training data augmentation. An Unrolled Generative Adversarial Networks (Unrolled GAN)-powered framework is developed and successfully used to balance the training data of smartphone accelerometer and gyroscope sensors in different contexts of road surface monitoring. Experiments with other sensor data from an open data collection are also conducted. It is demonstrated that the proposed approach allows for improving the classification performance in the case of heavily imbalanced data (the F1 score increased from 0.69 to 0.72, p<0.01, in the presented case study). However, the effect is negligible in the case of slightly imbalanced or inadequate training sets. The latter determines the limitations of this study that would be resolved in future work aimed at incorporating mechanisms for assessing the training data quality into the proposed framework and improving its computational efficiency

    Internet voting user rates and trust in Switzerland

    Full text link
    corecore